На рисунке представлен график колебаний маятника. Гармонические колебания

Тест по физике Гармонические колебания для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.

1. Выберите верное(-ые) утверждение(-я).

А. колебания называются гармоническими, если они про­исходят по закону синуса
Б. колебания называются гармоническими, если они про­исходят по закону косинуса

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. На рисунке представлена зависимость координаты центра шара, подвешенного на пружине, от времени. Амплитуда колебаний равна

1) 10 см
2) 20 см
3) -10 см
4) -20 см

3. На рисунке показан график колебаний одной из точек струны. Согласно графику, амплитуда колебаний равна

1) 1 · 10 -3 м
2) 2 · 10 -3 м
3) 3 · 10 -3 м
4) 4 · 10 -3 м

4. На рисунке представлена зависи­мость координаты центра шара, подвешенного на пружине, от времени. Период колебаний равен

1) 2 с
2) 4 с
3) 6 с
4) 10 с

5. На рисунке показан график колебаний одной из точек струны. Согласно графику, пе­риод этих колебаний равен

1) 1 · 10 -3 с
2) 2 · 10 -3 с
3) 3 · 10 -3 с
4) 4 · 10 -3 с

6. На рисунке представлена зависимость координаты центра шара, подвешенного на пружине, от времени. Частота колебаний равна

1) 0,25 Гц
2) 0,5 Гц
3) 2 Гц
4) 4 Гц

7. На рисунке показан график х , см колебаний одной из точек струны. Согласно графику, частота этих колебаний равна

1) 1000 Гц
2) 750 Гц
3) 500 Гц
4) 250 Гц

8. На рисунке представлена зависимость координаты центра шара, подвешенного на пру­жине, от времени. Какой путь пройдет шар за два полных ко­лебания?

1) 10 см
2) 20 см
3) 40 см
4) 80 см

9. На рисунке представлена за­висимость координаты центра шара, подвешенного на пру­жине, от времени. Эта зависи­мость является

1. На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. В момент времени, соответствующий на графике точке D, полная механическая энергия маятника равна: 1) 4 Дж 2) 12 Дж 3) 16 Дж 4) 20 Дж 2. На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. В момент времени кинетическая энергия маятника равна: 1) 0 Дж 2) 10 Дж 3) 20 Дж 4) 40 Дж 3. На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. В момент времени кинетическая энергия маятника равна: 1) 0 Дж 2) 8 Дж 3) 16 Дж 4) 32 Дж 4. Как изменится период малых колебаний математического маятника, если длину его нити увеличить в 4 раза? 1) увеличится в 4 раза 2) увеличится в 2 раза 3) уменьшится в 4 раза 4) уменьшится в 2 раза 5. На рисунке изображена зависимость амплитуды установившихся колебаний маятника от частоты вынуждающей силы (резонансная кривая). Амплитуда колебаний этого маятника при резонансе равна 1) 1 см 2) 2 см 3) 8 см 4) 10 см 6. При свободных колебаниях груза на нити как маятника его кинетическая энергия изменяется от 0 Дж до 50 Дж, максимальное значение потенциальной энергии 50 Дж. В каких пределах изменяется полная механическая энергия груза при таких колебания? 1) не изменяется и равна 0 Дж 2) изменяется от 0 Дж до 100 Дж 3) не изменяется и равна 50 Дж 4) не изменяется и равна 100 Дж 7. Груз колеблется на пружине, двигаясь вдоль оси. На рисунке показан график зависимости координаты груза от времени. На каких участках графика сила упругости пружины, приложенная к грузу, совершает положительную работу? 1) 2) 3) 4) и и и и 8. Груз колеблется на пружине, двигаясь вдоль оси. На рисунке показан график зависимости координаты груза от времени. На каких участках графика сила упругости пружины, приложенная к грузу, совершает отрицательную работу? 1) 2) 3) 4) и и и и 9. Груз колеблется на пружине, двигаясь вдоль оси. На рисунке показан график зависимости проекции скорости груза на эту ось от времени. За первые 6 с движения груз прошел путь 1,5 м. Чему равна амплитуда колебаний груза? 1) 0,5 м 2) 0,75 м 3) 1 м 4) 1,5 м 10. Математический маятник с периодом колебаний Т отклонили на небольшой угол от положения равновесия и отпустили без начальной скорости (см. рисунок). Через какое время после этого кинетическая энергия маятника в первый раз достигнет минимума? Сопротивлением воздуха пренебречь. 1) 2) 3) 4) 11. Математический маятник с периодом колебаний Т отклонили на небольшой угол от положения равновесия и отпустили с начальной скоростью, равной нулю (см. рисунок). Через какое время после этого потенциальная энергия маятника в первый раз вновь достигнет максимума? Сопротивлением воздуха пренебречь. 1) 2) 3) 4) 12. Математический маятник с периодом колебаний Т отклонили на небольшой угол от положения равновесия и отпустили c начальной скоростью равной нулю (см. рисунок). Через какое время после этого кинетическая энергия маятника во второй раз достигнет максимума? Сопротивлением воздуха пренебречь. 1) 2) 3) 4) 13. Груз массой 50 г, прикреплённый к лёгкой пружине, совершает свободные колебания. График зависимости координаты x этого груза от времени tпоказан на рисунке. Жёсткость пружины равна 1) 3 Н/м 2) 45 Н/м 3) 180 Н/м 4) 2400 Н/м 14. Как надо изменить жёсткость пружины маятника, чтобы увеличить частоту его колебаний в 2 раза? 1) уменьшить в 2 раза 2) увеличить в 4 раза 3) увеличить в 2 раза 4) уменьшить в 4 раза


Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила , скорость и ускорение , тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 1) гармоническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; - начальная фаза;

Фаза колебании в момент времени t. Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени колеблющаяся точка максимально смещена от положения равновесия, то , а смещение точки от положения равновесия изменяется по закону

Если колеблющаяся точка при находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

Величину V, обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

Если за время t тело совершает N полных колебаний, то

Величину , показывающую, сколько колебаний совершает тело за с, называют циклической (круговой) частотой .

Кинематический закон гармонического движения можно записать в виде:

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 2, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая .

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

где - амплитуда проекции скорости на ось х.

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на (рис. 2, б).

Для выяснения зависимости ускорения найдем производную по времени от проекции скорости:

где - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 2, в).

Похожие статьи